PLAViIMOoP 2 Software

User Manual

Written by Arnaud DECATOIRE & Christel Bidet-lldei

Version 1 —-2020

CeRCA CIrs

INSTITUT
A

1.
2.
3.

4.

CONTENTS

GENEral PreSENTAtION.uuiiiiiii s -4 -
INSEAIIALIONS ...ttt ettt e e e e e e ettt e e e e e e s e re e e e e e e e e s ab b eeeeeeeee e e nnrraeees -4-
INPUL / OULPUL FOPMALSooeiiiiiiii ettt e ettt e ettt e e e s tba e e e ettt e e e e sattaaeeeatsaeeesnstaeaesastsesaessranassnes -6-
3.1 InpuUtdata format .o, -6-
3.2, OUtpUL data formMats ..., -6-
MOVECK FUNCEIONAIIEIESeeeiiiiiiie ettt e e e s et e e e e e e st r et e e e e e s s s aasreaeeas -7-
4.1. Presentation of MOVECK INtEIrfaCecoviueiiiiiiiieee et et e e e e e s ibrreeeeeee e s -7-
4.2. Moveck visualization configuration fil@S............uuuiiiiiiiiiiiiiiiiiiiiiie . -7-
4.2.1. Object settings (*.p0s): Markers apPEAranCeuueeeieeeiiiiiiiieeeee e e et e e e e e e crrr e e e e e e e e e e araaaeeaaeeas -7-
4.2.2. Camera settings (*.pCs): 3D SCENE APPEATANCEuvvviereeeeeeiiitrreereeeeeeeiettrreeeeeeesaaaarraseeeesessissssrsseeeaaees -8-
4.2.2.1. ThE CAMEIA TOOIS ..eeiiiiiiee ettt et e e s e e st e e st e s snreeeesaaneeeens -9-
4.2.2.2. Global frame and BroUNdccooeeeeeeeieee e -10-
4.2.3. Create a personal object and camera SETLINGSvvvviiiiiiiiiiiiiiiiiiiiieeiereerererre e -10-
e T o PNV o o TSN 01] B 1 PP PPPPPPPPPPRt -10-
A4, GENEIAE @ VIHEO ..eeiiiiiiiieieiiiee ettt ettt ettt e e sttt e s st e e e st e s e e e e st e st e s anr e e e e narees -11-
PLAVIMOP 2 fUNCLIONAIIEIEScoooiiiiiiiiiieeee ettt e e e s e e e -11-
5.1. Load a point-light SEQUENCEccoi i -11-
5.2. Load a camera and an object configuration file.............cccc -12-
5.3, Spatial transformation ... -12-
53.1. IIFFOF i -12 -
5.3.2. ROTATION .o -12 -
5.3.3. SCIAMDBIEA ..ottt ettt e e sttt e e et e e saabe e e e e anneeeeeaa -13-
5.4, MaASKING PLDS.....cc e -14 -
5.4.1.1. SEATIC MASKS e st e e s e s s -15-
5.4.1.2. LIN@AI MASKS ..eeeeiieiieee ettt ettt e e ettt e e sttt e s s e e s eab bt e e e snbe e e e s arreeeenans -15-
5.4.1.3. RANAOM MASKS ..ot ettt e st e s st e e e sanneeeeeans -16-
5.4.1.4. SCrAMbBIE MASKS. ..ttt s st e s e e e s e e s -16-

5.5. Velocity transformation ... -17 -
5.5.1. Transformations applied to the norm of the velocity................ccc -17 -
5.5.1.1. CONSTANT NOIM e -17 -
5.5.1.2. L NZ= €Y= s o o o 4 PP P PP P PP PP PP PPPPPPPPPPPPPPPRY -18-
5.5.1.3. ACCEIEIATEA NOMM ...ciiiieiieee ettt sttt e e e sttt e s sttt e e sabe e e e snbeeeeeaneas -19-
5.5.1.4. DECEIBIAtEA MO ..ttt ettt e et e e st e e s eabb e e e e snbeeeeeanreeeeeans -20-
5.5.2. Transformations applied to each component of the velocityccc L -21-
5.5.2.1. Manual setting of VeloCity COMPONENTSviiiiiiiiiiiiiiiiiiiieieeteeeeeeeeeeereereerreerererreerrrrrr—————————. -21-
5.5.2.2. Apply the same transformation to a group of point lights.......................l -22-

-2-

6.
7.

5.5.2.2.1. Constant veloCity COMPONENTESiiiiiiiieiiiie e e e e e e e et rre e e e e e e eeaanaaeeeaaaeens

5.5.2.2.2. Inverse VeloCity COMPONENES ...ccciiiiiiiiii

5.6. History transformation file..........coooiiiiiii

LT A o d o Yo T o - 14 L A 24 (V= T PSRRI

5.7.1.
5.7.2.
5.7.3.

YAV ZT: 1 O D TR
(o To] A O OO

LRI LU= T o DO PPPPPPPPPRt

5.7.3.1. (ST 1=l = | oo A R Lo (=] = 1 oY LT

5.7.3.2. Developers CONSIAEIAtIONSuuuiiiiiiiiiiiiiiiieiieeteeeeeeereeeeeeeeeereeeeeeeaerereerererrrararerrrreeerarrarrrrrrrrrres

(0= =1 =] (L=

Annexes

7.1, History transformation file...........cooo i

J.2.USE PIUGIN e,

1. General presentation

PLAViIMoP 2 software is the acronym of Point-Light Action Visualization and Maodification Platform. It is
composed of a Matlab graphical user interface interacting with a window of visualization. The main goal of this
platform is to propose a tool that allows to visualize and transform movements displayed as point-lights in a 3D scene.
A point-light represents the 3D trajectory of a marker placed on a human, an animal, an object... The marker movement
is generally tracked with motion capture system consisting in multiple optoelectronic cameras (Vicon, Motion, Qualisys,
Optitrack ...). Here is an example of a point-light sequence representing a walking human movement:

2. Installations

Both Matlab interface and Moveck software are required, as well as Windows 64 bits system and an internet
connection for installation.

Matlab interface installation requires administrator rights.

The minimal screen resolution is 1024 x 900 pixels. However, the application has been optimised for a 1920 x 1080
pixels screen resolution.

Go to https://plavimop.prd.fr/en/contact and ask PLAViMoP Software release 2.

When you receive the link, download the software installation package setupPlavimop.exe

|l Setup - PLAVIMoP - X
License Agreement h
Flease read the following important information before continuing. C

Please read the following License Agreement, You must accept the terms of this
agreement before continuing with the installation.

PLAVIMop Setup Li . .
il - After launched the installation, you must accept the

!
Except where otherwise noted, all of the documentation and software included agreement.
in the PLAVIMOP Setup package is copyrighted by CeRCA,

| Copyright (C) 2018-2026 CeRCA., Al rights reserved. |
This software is provided "as-is,” without any express or implied warranty.

In no event shall the author be held liable for any damages arising from the
use of this software,

@I accept the agreement
(O do not accept the agreement

https://plavimop.prd.fr/en/contact

B setup - PLAVIMOP -

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while instaling PLAVIMoP,
then dick Next.

Additional shartouts: H H 2

' onal s 0; - The installation of PLAViMoP web must be checked.
| Create a desktop shortcut

— p Press “next”.

nstallaoon

Installation de PLAVIMoP web

< Back Cancel
BT F 8 cPrrryer s Py e ey =
= |

Installing
Please wait while Setup installs PLAVIMoP on your computer.

Finishing installation. ..

1 The first part of the installation is ended. You need to

wait time ... perhaps long time.

Cancel

= o X

&l PLAVIMOP Installer

Connection Settings

PLAViMoP 1.4

The next MatLab part begin to install automatically.
The JRE Matlab will be installed if is not yet.
You press “next” to next all screens

Cancel

Completing the PLAViIiMoP Setup
Wizard Great ! |

Setup has finished instaling PLAVIMGP on your computer. The
application may be launched by selecting the installed If you see this scree n, PLAViMoP software is

shorteuts, .
. . succesfully installed.
Click Finish to exit Setup.

Have enjoy !

After installation, a folder link “PLAViMoP 2 ressources” have been created on your desktop.

3. Input / output formats

3.1. Input data format

Only the C3D format is supported by PLAViMoP 2 software. This is the standard format of motion capture file.
The file should contain only 3D trajectories of a set of markers (no force plate data, no analogical channel ...). The X, Y
and Z components are expressed in millimetres in a global reference frame (forward direction given by X-axis, vertical
direction given by Z-Axis pointing upward and lateral direction given by Y-Axis pointing to the left of the
subject/object). The number of markers is not limited, but for example, the common human motion set of markers is
listed in the following table.

Markers names Locations / Descriptions
Right Left
R_Heel L_Heel Back of the right and left heels
R_Toe L_Toe Top of the right and left big toes
R_Ankle L_Ankle Middle of external and internal ankles markers
R_Knee L Knee Middle of external and internal knees markers
R_Hip L_Hip Right and left hips centres of joint computed as [5]
R_Shoulder | L_Shoulder | Right and left acromion
R_Elbow L_Elbow Right and left lateral epicondyle
R_Wrist L_Wrist Right and left radial styloid
R_Finger L_Finger | Right and left distal phalanx of the index fingers
Head Mean point of right and left front head markers and right and left back head markers

The number of frames of the C3D file is not limited as well as the frame rate. But, keep in mind that high number of
frames and/or high frame rate will result in a time-consuming process. For example, the provided C3D file are sampled
at 100 Hz and contain around 200 frames.

If you do not have C3D files, you can find some files in the PLAViMoP Database https://plavimop.prd.fr/en/motions or
you can create them from a .CSV file containing all information on the PLD (3D time histories of markers, names of
marker components and a time column). For this, you can use the plug-in “CSVtoC3D” proposed in PLAViMoP 2 (for
more information on the use of plug-in, see here).

3.2. Output data formats

After the process, the data can be saved as C3D file as well as a video (*.mov file) or a data table (*.csv file)
via PLAViMoP 2.

https://plavimop.prd.fr/en/motions

4. Moveck functionalities

4.1. Presentation of Moveck Interface

| @ pLavimer - o x

. Run_Man_Original_Fi...

¥ Files Settings
Object settings:
essai_config.pos

Camera settings:

€5531_Camera.pcs

¥ Video generator

Medium - sooxso [l Resolutio

800 px Width
600 px Height
0 Start

Stop

L_Elbow
L_Finger
L_Heel
L_Hip
L_Knee
L_Shoulder
L_Toe
L_Wrist
R_Ankle
R_Elbow

Marker settings
+" Visible
10.000 Diameter (mm)

255 255 255 Color

|-

- 0 10

Figure 1: Presentation of the Moveck interface. On the left, a 3D view displaying the content of the C3D file. On the
right, you have access to some tools (e.g., specify the object settings, the camera settings, generate a video).

30 50 70 90 110 130 150 170 190 Z]0|230 250 270 290 310 330 350 370 390 410 430 450 470 490 510 530

4.2. Moveck visualization configuration files

The way Moveck displays the content of a C3D file depends on the object (*.pos) and the camera (*.pcs) settings.

4.2.1. Object settings (*.pos): Markers appearance

For each marker, you can choose to show or hide it and you can change its size and its colour.

For that, click on a marker’s label listed under the “Markers” node and check/uncheck “visible” in “Markers settings”
area to show/hide it, change the diameter of the selected markers and click on the coloured square to modify the
colour.

Notes:

- If you want to apply the same modification to several markers, just select them by maintaining the CRTL key
before changing the markers’ properties.

- Asthe size of the markers are their real sizes and as the markers can be more or less distant from the
camera (in the perspective mode), two markers with the same size can appear as two circles with different
size.

¥ Markers
Head
L_Ankle
L_Elbow
L_Finger
L_Heel
L_Hip
L_Knee
L_Shoulder
L_Toe
L_Wrist
R_Ankle
R_Elbow
R_Finger
R_Heel
R_Hip
F_Knee
R_Shoulder
R_Toe
F_Wrist

Marker settings
+" Visible {~}
10.000 Diameter (mm)
r241 G:21 B:17 [color(n)
Trajectory

{~} multi values not uniform

All the characteristics chosen can be saved by using “save Json configuration file” in the object settings at the right

top of the interface and reloaded.
\hject settings:

4.2.2. Camera settings (*.pcs): 3D scene appearance

All the following characteristics can be saved by using “save Json configuration file” in the camera settings at the
right top of the interface and reloaded

Camera settings:

4.2.2.1. The cameratools

In the camera settings (click on “Camera” to display them), you can choose the projection mode and the view of
visualization. You can switch between “orthogonal“” and “perspective” projection and between up, bottom, left, right,
forward, backward and Custom view with the tool in the right corner.

Up
Bottom
Left

Right
Forward
Project Backward

Orthographic View Custom Project
Perspective Positio Left . View

The orthogonal projection mode is useful if you want to precisely set a side/front/top point of view.

Camera settings

gs

Perspective

For both orthogonal and perspective projections:

- Use the mouse wheel to zoom in/out on the 3D scene. It works for both mode (hold alt gr then left click of the
touchpad + move up/down).

- Click and hold the mouse wheel then move the mouse to grab the 3D scene (hold alt then left click of the
touchpad + move).

For perspective mode only:

- Click and hold the left mouse button (or touchpad button) to rotate around the 3D scene.

In this setting, you can also directly fix the position of the camera (elevation and azimuth) and the zoom of the C3D.

Camera settings

Perspective . Projection
Custom . View
-1.9 1.8 -0.4 Position
0.8 0.8 0.1 Target
-100.000 Azimuth
20.000 Elevation
3.000 Zoom

4.2.2.2. Global frame and ground

You can choose to show or hide the global frame and the ground in the 3D view window. For this, simply check or
uncheck the case “visible” after clicking on “Global Frame” and/or “Ground”.

- PLAViMoP - a
. LancerPoids.c3d

P Files Settings
P> Video generator

Camera

Global Frame

Ground

¥ Markers

ASRD
ASRG
ASUD
ASUG
AcromionD
AcromionG
AvbrasD
AvbrasG
c7
CID
ClG
CalcaD
CalcaG
ClaviculeD
ClaviculeG
CondExtD
CondExtG
CondIntD
CondintG

Global frame settings

Visible

JS 996 1006 1016 1026 1036 1046 1056 1066 1076 1086

4.2.3. Create a personal object and camera settings

To summarize this part:

1) Modify directly the proprieties of the objects (for example change the colour or the size of some dots of the
C3D file) and of the camera (size of the character, position in the window).

2) Save your configurations by using the tools “save Json configuration file” for both object and camera
configurations.

Once you have created an object and/or a camera configuration, you can visualize others C3D files with these
configurations by clicking to “load Json configuration file” and select the required file.

4.3. Play the C3D file
To play the content of a C3D file:

- Simply use the time bar buttons, or
- Move directly the cursor of the time bar.

- W
o 0 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

-10-

4.4. Generate a video
You can generate a video (*.mov) from your c3d. This video will keep all the characteristics of the C3D file (size,
colour, view, etc.). For this simply, choose the resolution (Low, Medium, High or Custom), the start and stop frames

and click on “Export”.

¥ Video generator

Mediurn - 300x600 . Resolutior

8OO px Width
600 px Height
o Start
538 Stop

5. PLAViIMoP 2 functionalities

To start the application, double click on the PLAViMoP2.exe file. It will launch the Matlab graphical user interface and

Moveck application.

The user interface is divided in four zones:

- Load movement

- Spatial transformation
- Velocity transformation
- Exportations/Plug-in

5.1. Load a point-light sequence

To load a C3D file, click on the Load button. It will automatically open the C3D Files folder of the application.
Even if the best practice is to put the C3D file in this folder, you can browse your disk to load a C3D file from another
location. When afile is selected, the application loads it into Moveck with the Moveck Visualisation Configuration file
(if specified). A copy of the original C3D file is automatically made in the Working directory folder of the application
and all future transformations will be made on this copy so that to preserve the original file.

If you are “lost” in your transformation, you can easily reload the original C3D file with the Re-Load button.

Note #1: if another C3D file is loaded, all the content of the Working directory is deleted. So, be sure to save

your previous work before (re)loading.

Note #2: to use your own c3d files or c3d files downloaded from PLAViMoP Database, put the files in the “C3D
Files” directory created during the installation of PLAViMoP 2 Software.

-11-

5.2.Load a camera and an object configuration file

A C3D file can be loaded with particular Moveck Visualisation camera (*.pcs) and objects(*.pos) configuration
files. For that, use the popup menu of the load movement zone to choose the files. The files listed here are the ones
present in the “Camera settings” and “Markers settings” folders of the application.

~PLAVIMOPZ2\C3D Files\Basket_Shoot.c3d

Load Re-Load

Markers Camera

Refreszh % | |Refresh W

None
Profil
Top

If you have created a new *.pos or *.pcs file with Moveck since PLAViMoP 2 have been started, you can refresh
the list by selecting "Refresh” in the corresponding popup menu.

5.3. Spatial transformation

This module enables to transform spatially the original motion. The different modifications are detailed below.

5.3.1. Mirror
This transformation enables to create horizontal, lateral or vertical symmetry of the original motions.

To apply a mirror transformation to a point-light sequence, click the corresponding transformation on the interface.
The result appears directly in the Moveck window.

5.3.2. Rotation

The rotation transformation enables to rotate about different axes (x, y, z) the original sequence of motion.

The rotation point (origin, mean point or joints) and as well as the rotation angle (from —180° to 180°) can be
specified by the user.

To apply this transformation, first choose the axes and angle of rotation and then set the point around which the
rotation has to be made with the popup menu.

-12 -

Rotation

xa [o

YA [o

z [oo
Around

Origin v

Mean point
R_Heel

L Heel
R_Foot

L Foot
R_Ankle
L_Ankle
R_Knee

L Knee
R_Hip
L_Hip

| |R_Shoulder
H L_Shoulder
| | R_Elbow
L_Elbow

M R_wrist N
L Wrist

R_Hand

" L_Hand v

Finally, click on Refresh button to perform the following operation (note that the rotation sequence is X, Y, Z in
this order).

For example, here is an illustration of a rotation of 100° around X-axis made about the mean point:

Rotation

X[[»]100°

YA I o

z A [e
Around

Mean point w
Refresh

5.3.3. Scrambled

This transformation enables to scramble each point constituting the sequence.
There are two modes: Shuffle and Random
In Shuffle mode, each point takes the place of another but conserves its initial trajectory and dynamic.

To perform a shuffled scramble transformation, just click on the Shuffle button.

-13-

In the example presented below, the right elbow randomly inherited the trajectory and dynamic of the left foot
marker.

Scrambled

Shuffle Random

In Random mode, each point takes a random place but conserves its initial trajectory and dynamic.
To perform a randomized scramble transformation, just click on the Random button.

In the example presented below, the left toes starting position moves randomly to another point inside the box
defined to avoid the markers to leave the 3D scene volume during the movement.

Scrambled

Shuffle Random

5.4. Masking PLDs

The masks are additional point lights that make more difficult the original movement recognition. There are
four kinds of masks:

Static masks

Linear masks
- Random masks

Scrambled masks

The first three have two different behaviours detailed below.

-14 -

Mask
Static] +| g0
[] Winker | OHz

Linear 1] L0
[]Intensity | 0%

Apply
Random 1] Ll 0
[1Intensity | 0%

Scrambled 1| + | x0

54.1.1. Static masks

The static mask is simply a not moving point light whose coordinates (randomly defined) lay in the limits of
the bounding box. Up to 200 static masks can be added using the dedicated slider. Click then on Apply button to
update the C3D file.

Mask
- N i ‘)

The second behaviour occurs if the Winker button is checked. The associated slider becomes enable. Use it to
specify the flashing frequency (from 1 to 25 Hz). As the C3D file frame rate is 100 Hz, a flashing frequency of 1 Hz
causes a mask being visible/invisible alternatively during 25 consecutive frames while a flashing frequency of 25 Hz
causes a mask being visible/invisible alternatively during 2 consecutive frames.

Visible Invisible Visible Invisible
A A A A
Y Y hYd .
I TR ST PR ST PR ST T BT TR R R 1 Hz flashing
L b e b b b b b e b b frequency
1 10 20 30 40 50 B0 70 30 =i} 100
54.1.2. Linear masks

The linear mask is a moving point light with constant velocity. Linear masks only move along X-axis (in positive
or negative direction). Their initial positions are randomly chosen. According to their initial positions and the duration
of the C3D file, a maximal velocity is computed in order to keep the masks in the limits of the bounding box. Then a
random percentage of this velocity is chosen to compute the trajectory. Up to 200 static masks can be added using
the dedicated slider. Click then on Apply button to update the C3D file.

-15-

< Frame1l.......... Frame 80 >

Linear [|10 |

l < Frame 1. Frame 80 >

The second behaviours occurs if the Intensity button is checked. The associated slider becomes enable. Use it
to specify the common percentage of maximal velocity assigned to each mask (from 0 to 100 %). As there are two
possible directions for the displacement of linear masks, masks can be divided into two groups. All the markers of the
same group will have the same velocity. A 0 % intensity causes static masks, while a 100 % intensity ensures that all
markers of the group stay in the limits of the bounding box.

54.1.3. Random masks
The random mask is a point light with a randomly defined trajectory. Both initial position and instantaneous
acceleration are randomly chosen. Masks move along the three axes. A control loop ensures that the mask stays in
the bounding box limits (rebound).

The second behaviour occurs if the Intensity button is checked. The associated slider becomes enable. Use it
to specify the common percentage of maximal velocity (arbitrary fixed to 10 m/s) assigned to each mask (from 0 to
100 %).

5.4.1.4. Scrambled masks

The scrambled mask is a set of point light with the same trajectory of initial point light set. Only their starting
positions are defined randomly. A control loop ensures that the mask stay in the bounding box limits. The number of
scrambled mask (k) is proportional with the number of point light (n) in the initial set.

Note that k is limited by the relation: k x n <200.

-16 -

* |nitial set

® Scrambled duplication #1

Scrambled duplication #2

Please see [2] for the use of scrambled masks.

5.5. Velocity transformation

This series of tools aims to modify the dynamic of point light displacement. There are two different type of
transformation:

- Modifications based on changes in the norm of the velocity: in this case, the norm of the velocity of a point
light is modified in order to keep the original point light path (4 kinds of modification).

- Modifications based on changes in the components of the velocity: in this case, both norm, components and
path are modified (3 kinds of modification).

5.5.1. Transformations applied to the norm of the velocity

The norm of the velocity of a given point light is classically computed at each frame with:

Vi = /V,? +VE+ V2

All transformations detailed below enable to modify the dynamic of the original sequence but in keeping the original
trajectory and movement duration.

551.1. Constant norm
For this transformation, the components of a given point light velocity are modified in order to:

1) Keep the original point light path
2) Keep the original movement duration
3) Keep a constant norm of the given point light velocity throughout the movement

-17 -

In PLAViMoP 2, to process this kind of transformation, just click on the Constant button of the “Work on
norm” section to open the point light selection window.

'4] Constant velocity’ norm transforma.. — &

Select marker(s):

R_Heel "
L_Heel

R_Foot

L Foot

Velocity transformation R_Ankle

Work on components: L_Ankle
R_Knee
Constant Inverse By marker L_Knee

Work on norm: L_Hip
R_Shoulder v

Constant Inverse Acceleration | |Deceleration

Show results after the transformation:

Apply Cancel

You can select several markers at the same time by holding Ctrl key.

If you want to see the detailed process (figures presented in Annexes), check the box “Show results after
transformation”.

By clicking on Apply button, the computations are made and the C3D file is updated.

The velocity (V) and acceleration (A) of each point light are added in C3D file and can be accessible in the csv table
(see here).

5.5.1.2. Inverse norm

For this transformation, the components of a given point light velocity are modified in order to:

1) Keep the original point light path
2) Keep the original movement duration
3) Getanorm of the given point light velocity inverted with respect to the mean norm original velocity.

In PLAViMoP 2, to process this kind of transformation, just click on the Inverse button of the “Work on
norm” section to open the point light selection window.

You can select several markers at the same time by holding Ctrl key.

If you want to see the detailed process (figures presented in annexes), check the box “Show results after
transformation”.

By clicking on Apply button, the computations are made and the C3D file is updated.

The velocity (V) and acceleration (A) of each point light are added in C3D file and can be accessible in the csv table
(see here).

-18 -

[4] Inverse velocity' norm transformati.. — O

Select marker(s):

R_Heel £

Velocity transformation
Werk on components: L Foot

R_Ankle

Constant Inverse By marker L Ankle
R_Knee

Work on norm: o L_Knee
/ R_Hip

Constant Inverse cceleration | Deceleration L Hip

5.5.1.3. Accelerated norm

Apply Cancel

For this transformation, the components of a given point light velocity are modified in order to:

1) Keep the original point light path
2) Keep the original movement duration
3) Get an uniformly accelerated motion

In PLAViMoP 2, to process this kind of transformation, just click on the Acceleration button of the “Work on
norm” section to open the point light selection window.

You can select several markers at the same time by holding Ctrl key.
If you want to see the detailed process, check the box “Show results after transformation”.
By clicking on Apply button, the computations are made and the C3D file is updated.

The velocity (V) and acceleration (A) of each point light are added in C3D file and can be accessible in the csv table
(see here).

Velocity transformation 3D Trajectories
Work on components: /
Constant Inverse By marker
Work on norm:
Constant Inverse Acceleration | |Deceleration HEh 500 X
Y
4] Acceleration transformafion = B Il
4 T T T T T
Select marker(s): f Original
R_Heel ~ 35 I." | — Modified | -
L_Heel || [[
R_Foot 3H [| II J
L_Foot | [(|
R_Ankle — / | / |
L Ankle £2s | f f T
R_Knee = | | | J |
L_Knee $ 2r | |I | | | i
R_HID / % I| | | l,
L_Hip % | | II
R_Shoulder v > 151 | | | | | i
| ' | | |
¥ Show results after the trapgformation; 1r | { P | | 1
|
u‘ 'I,""" I||| | ll I
051 A I I .
", ' o/
N Vo SV VSR N ¥
Apply Cancel 0o 05 1 15 2 25 3
\ Time (s)

-19-

5.51.4. Decelerated norm

For this transformation, the components of a given point light velocity are modified in order to:

1) Keep the original point light path
2) Keep the original movement duration
3) Get an uniformly decelerated motion

In PLAViIMoP 2, to process this kind of transformation, just click on the Deceleration button of the “Work on
norm” section to open the point light selection window.

You can select several markers at the same time by holding Ctrl key.
If you want to see the detailed process, check the box “Show results after transformation”.
By clicking on Apply button, the computations are made and the C3D file is updated.

The velocity (V) and acceleration (A) of each point light are added in C3D file and can be accessible in the csv table
(see here).

Velocity transformation / 3D Trajectories
Work on components:
Constant Inverse By marker
Work on norm:
Constant Inverse Acceleration |Deceleration v
/.
II
4] Deceleration transformation o v
J 1
Select marker(s): . —— Original
‘-\\ Modified
R_Knee ~
L_Knee 2 N
R_Hip
L_Hip - B
R_Shoulder B 15T a
L_Shoulder g N / RN
R_Elbow = \ / \
L_Elbow 2 4l \ Vo
R_Wrist A > \/ \/
L_Wrist /
R_Hand
= A 05
'Show results after the transformation: \\\
0 .
] 0.5 1 15 2 25 3
\ Time (s)
Apply Cancel

Please see [3] and [4] for illustrations of these transformations.

-20-

5.5.2. Transformations applied to each component of the velocity

The main difference between this series of transformations and the previous ones is that the initial trajectory
of point light is not maintained after the transformation. The modifications are applied to one, two or three
components of the velocity for a given point light and it results in a new velocity norm and a new path for the point
light.

55.2.1. Manual setting of velocity components

By clicking on By marker button of PLAViMoP 2 application, you can access to three kind of velocity
components transformation: constant, inverse and manual. The transformations can be applied components by
components and point light by point light. Once a transformation is chosen for a point light and a velocity component,
the new acceleration and coordinates are automatically computed.

With the manual transformation, it is possible to redefine the shape of the velocity component curve. For C3D
file of more than 20 frames, 19 movable points (green circles) are added to the velocity curve. Just left click, hold and
vertically drag the circle to move the checkpoint. When the left button is released, the velocity and acceleration
components as well as the point light coordinates are re-computed. A shape-preserving piecewise cubic interpolation
is performed between the clicked circle and the previous green (or red if any) circle, and between the clicked circle
and the next green (or red if any) circle.

Use the popup menu on top of column of graphs to switch between original, constant, inverse and manual
transformation modes.

] \

Transfomation type == Original "
ovgivat |
Constant
3000 | Inverse
Markers' list Manual

R_Heel W 20001

1000

— Use the popup menu of markers’ list to
select the point light whose velocity has to
be modified.

View norm

VIl
>\ o000l

Position {m)
(=]

At any moment, it is possible to have a look at the effects of the transformations on the norm of the velocity
by clicking on the push button View norm.

All the transformations are memorized and are definitively applied to the C3D file when closing the window.
So it is not necessary to close the window after each point light transformation.

As for the transformations applied to the norm of the velocity, when the C3D file is updated, the new velocity
and acceleration components and norms are written and are available as described here.

-21-

5522 Apply the same transformation to a group of point lights

5522.1. Constant velocity components

It is possible to apply the same constant velocity component transformation (as described here) to a set of
point light by clicking on the Constant button of the “work on component” section.

(4] Constant velocity transformation — E'

Velocity transformation
Work on components: Select marker(s):

Constant Inverse By marker R_Heel .
L_Heel
R_Foot
Work on norm: L Foot

R_Ankle
Constant Inverse Acceleration | Deceleration \ L:Ankle

R_Knee

L_Knee

R_Hip

L_Hip

R_Shoulder v

Select component(s) affected by |x .
the transformation:

Canc¢ x7

In the opening window, use the popup menu to select the component(s) that will be affected by the transformation.
You can select several markers at the same time by holding Ctrl key.

Click on Apply button to finalize the transformations. The C3D file will be updated, the new velocity and acceleration
components and norms will be written and available as described here.

55222, Inverse velocity components

It is possible to apply the same inverse velocity component transformation (as described here) to a set of
point light by clicking on the Inverse button of the “work on component” section.

VB'OCity transformation (4] Inverse velocity transformation - b

Work on components: Select marker(s):

Constant Inverse By marker R_Heel ~

L_Heel

Work on norm: R_Foot
N L_Foot

Constant Inverse Acceleration | |Deceleration R_Ankle

L_Ankle
R_Knee
L_Knee
R_Hip
L_Hip
R_Shoulder

Select component(s) affected by |x .
the transformation:

Canceé x7

In the opening window, use the popup menu to select the component(s) that will be affected by the transformation.

You can select several markers at the same by holding Ctrl key.

-22-

Click on Apply button to finalize the transformations. The C3D file will be updated, the new velocity and acceleration
components and norms will be written and available as described here.

5.6. History transformation file

When loading a C3D file, a transformation history file (xml format) is created in the Working directory of the
application. After each transformation made with the Matlab application, this file is updated. It allows to have a
monitoring of the transformations processes. Here is an example of *.xml file illustrating the syntax of each kind of
transformation.

5.7. Exportations / Plug-in

This section contains tools to export a new c3d or a csv with all the coordinates of the movement. You can also use
pre-installed plug-in or your own transformations routines.

Save c3d Export CSV Plug-in

5.7.1. Save as C3D

To save your C3D, click on save C3D and choose a directory and a name.

5.7.2. Export CSV

This button allows to save 3D coordinates (X, Y, Z) of markers &/or masks associated with your C3D, as well
as their 3D velocities’ and accelerations’ components and norms Once you give a valid filename, just check the
corresponding boxes in the following window and click the “OK” button.

4] Data selection = =
Select the data to write in CSV file:
Markers Masks
Positions O O

Velocities (Components)

Accelerations (Components)

Velocities (Morm)

OoOooano
OoOooano

Accelerations (Morm)

OK

A CSV file is created with columns of data separated by semicolon character.
-23-

A B i€ D E F G
1 |Time (s) _I R_Heel X (n R_Heel ¥ (m R_Heel Z(nm L_Heel X (w L_Heel Y (m L Heel Z(m
2 0 664.769592 400.570221 351.613617 1154.83484 511.180695 169.504929
3 0.01 656.033691 397.516113 363.088928 1172.37622 509.236023 165.987473
4 0.02 648.448669 394.47641 374.582703 1183.9093 507.834015 165.624115
5 0.03 642151794 391.651184 386.356476 1188.98377 507.623993 166.174973
6 0.04 637.668152 388.6492 398.458832 1187.30811 507.783752 166.772552
7 0.05 635.017273 385.671906 410.345551 1177.36768 508.826508 168.520859
8 0.06 633.783752 383.448883 421.169525 1159.53552 508.317078 169.12796
g 0.07 633.225037 384.157867 430.201324 1135.45984 507.705688 166.808945

10 0.08 633.969604 386.870739 438.143524 1120.10169 507.699463 167.657333
1 0.09 636.643188 389.45874 445.274719 1101.60803 507.749084 170.511307
12 0.1 641.288696 390.511597 451.550018 1083.43897 507.750702 172.95311
13 0.11 647.33667 389.950348 456.702667 1064.58814 507.789978 173.536316

5.7.3. Use Plug-in

5.7.3.1. General considerations
The Plug-in button is a tool that allows to extent the functionalities of PLAViMoP 2. In fact, your own Matlab
script can be added to the Plugins Matlab folder of the application, and then it can be executed to perform the
transformation you develop. When clicking on Plug-in button, a floating window opens. The available plug-ins (stored
in the Plugins Matlab folder of the application) are listed in the popup menu.

[« Plugin matlab selection - =

List of Matlab plugins

v
Description
Mone

Author
Unknown

Version:
Unknown

Save c3d Save avi Plug-in Run Plugin

The selection of a plug-in updates the description (if provided) of the plug-in, whose format is detailed here.

(4] Plugin matlab selection = B
List of Matlab plugins
Translate.m v

Description: Translate all point lights of a given distance
along X, Y and 7 axes.

Author: A_ Decatoire

Version: 1.0

Run Plugin

Finally, click on Run Plugin button to execute the plug-in. The available operations for a plugin are:

- Modifications of coordinates of existing point lights

- Modifications of velocity components and norm of existing point lights

- Modifications of acceleration components and norm of existing point lights
- Adding new point-lights...

At the end of the execution of the plug-in, the C3D is updated with regard to the contents of the Outputs variable.

-24-

5.7.3.2. Developers considerations

A complete plug-in is composed of a valid, commented Matlab script (*.m file) and a description file (*.txt).
The script and the associated text file should have the save name (ex: Translate.m and Translate.txt).

The description file contents is organized in three parts:

- Description of the functionalities of the plug-in
- Author name (optionally with contact information)
- Version of the plug-in.

Here is an example of a valid description file.

6. References
! Barré A, Armand S. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.
Comput Methods Programs Biomedecine 2014; 80—-87

2 Bidet-lldei C, Chauvin A, Coello Y. Observing or producing a motor action improves later perception of biological
motion: Evidence for a gender effect. Acta Psychol (Amst) 2010; 134: 215-224

3 Bidet-lldei C, Méary D, Orliaguet J-P. Visual preference for isochronic movement does not necessarily emerge from
movement kinematics: A challenge for the motor simulation theory. Neurosci Lett 2008; 430: 236—240

* Martel L, Bidet-lldei C, Coello Y. Anticipating the terminal position of an observed action: Effect of kinematic,
structural, and identity information. Vis Cogn 2011; 19: 785-798

> Weinhand| JT, O’Connor KM. Assessment of a greater trochanter-based method of locating the hip joint
center. J Biomech 2010; 43: 2633-2636

-25-

7. Annexes

7.1. History transformation file

<?xml version="1.0" encoding="utf-8"?>
<Transformations_history Point_Light="Version 1.3">
<Original_File_Informations>
<Name>C:*\Working directory\Marche_Original.c3d</Name>
<Rate>100 Hz</Rate>
<Number_of Markers>21</Number_of Markers>
<Number_of _Frames>290</Number_of Frames>

</Original_File_Informations>

<Spatial_transformation>
<Model>GlobalMotricityNoLink.mvc</Model>
</Spatial_transformation>
<Spatial_transformation>
<Mirror_zZ>1</Mirror_Z>
</Spatial_transformation>
<Spatial_transformation>
<Rotation>
<Units>Degrees</Units>
<About>R_Heel</About>
<Rx>0</Rx>
<Ry>40</Ry>
<Rz>0</Rz>
</Rotation>
</Spatial_transformation>
<Spatial_transformation>
<Scrambled-Shuffle>
<Scrambled-1>L_Ankle became R_Heel</Scrambled-1>
<Scrambled-2>R_Foot became L_Heel</Scrambled-2>
<Scrambled-3>L_Wrist became R_Foot</Scrambled-3>
<Scrambled-4>R_Shoulder became L_Foot</Scrambled-4>
<Scrambled-5>R_Knee became R_Ankle</Scrambled-5>
<Scrambled-6>R_Hand became L_Ankle</Scrambled-6>
<Scrambled-7>L_Elbow became R_Knee</Scrambled-7>
<Scrambled-8>L_Knee became L_Knee</Scrambled-8>
<Scrambled-9>R_Ankle became R_Hip</Scrambled-9>
<Scrambled-10>Front_Head became L_Hip</Scrambled-10>
<Scrambled-11>R_Head became R_Shoulder</Scrambled-11>
<Scrambled-12>R_Wrist became L_Shoulder</Scrambled-12>
<Scrambled-13>R_Heel became R_Elbow</Scrambled-13>
<Scrambled-14>L_Heel became L_Elbow</Scrambled-14>
<Scrambled-15>L_Foot became R_Wrist</Scrambled-15>
<Scrambled-16>L_Hand became L_Wrist</Scrambled-16>
<Scrambled-17>R_Elbow became R_Hand</Scrambled-17>
<Scrambled-18>R_Hip became L_Hand</Scrambled-18>
<Scrambled-19>L_Head became R_Head</Scrambled-19>
<Scrambled-20>L_Hip became L_Head</Scrambled-20>
<Scrambled-21>L_Shoulder became Front_Head</Scrambled-21>
</Scrambled-Shuffle>
</Spatial_transformation>
<Spatial_transformation>
<Winkers_masks>
<Quantity>50</Quantity>
<Rate>11</Rate>
</Winkers_masks>

</Spatial_transformation>
<Spatial_transformation>
<Linear_masks>
<Quantity>60</Quantity>
<Intensity>Random</Intensity>
</Linear_masks>
</Spatial_transformation>
<Spatial_transformation>
<Random_masks>
<Quantity>40</Quantity>

-26-

<Intensity>Random</Intensity>
</Random_masks>
</Spatial_transformation>
<Spatial_transformation>
<Scrambled_masks>
<Quantity>x2</Quantity>
</Scrambled_masks>
</Spatial_transformation>
<Velocity_transformation>
<Components_Constant>
<Component>X</Component>
<Component>Z</Component>
<Marker-1>R_Heel</Marker-1>
</Components_Constant>
</Velocity_transformation>
<Velocity_transformation>
<Components_Inverse>
<Component>Y</Component>
<Marker-1>R_Foot</Marker-1>
</Components_Inverse>
</Velocity_transformation>
<Velocity_transformation>
<By_marker>
<Marker>R_Knee</Marker>
<Component>X</Component>
<Type>Constant</Type>
</By_marker>
</Velocity_transformation>
<Velocity_transformation>
<By_marker>
<Marker>R_Knee</Marker>
<Component>Y</Component>
<Type>Inverse</Type>
</By_marker>
</Velocity_transformation>
<Velocity_transformation>
<By_marker>
<Marker>R_Knee</Marker>
<Component>Z</Component>
<Type>Manual</Type>
</By_marker>
</Velocity_transformation>
<Velocity_transformation>
<Norm_Constant>
<Marker-1>R_Hip</Marker-1>
</Norm_Constant>
</Velocity_transformation>
<Velocity_transformation>
<Norm_lnverse>
<Marker-1>L_Hip</Marker-1>
</Norm_lInverse>
</Velocity_transformation>
<Velocity_transformation>
<Norm_Acceleration>

<Marker-1>R_Shoulder</Marker-1>

</Norm_Acceleration>
</Velocity_transformation>
<Velocity_transformation>
<Norm_Deceleration>
<Marker-1>R_Elbow</Marker-1>
</Norm_Deceleration>
</Velocity_transformation>

</Transformations_history>

s7.2. Use Plugin

// Description

Translate all point lights of a given distance along X, Y and Z axes.

// Author

A. Decatoire
// Version
1.0

The red parts are mandatory..

The script file should be written as follow (red parts are mandatory):

- Thefirst line syntax is:

function Outputs=Name_Of_Plugin(Inputs)

Choose a valid name for your plugin (i.e. without space and forbidden characters)

- The last line syntax is:

end % function

- Thereis no particular restriction for the main body of the script except comments and Matlab automatic
message at the end of line. However, comments are welcome to make the analysis of the plugin easier.

% Check walidity of settings (numerical wvalues) Qﬁ?
ok=1;
str={"X';'Y¥";'L"
msg={""};
for j=1:3
if isempty(str2double (answer{j})) | isnan(str2double (answer{j})) %::XCR;‘}
ok=0; T Updatgf output

default (j)=0;

There are two kinds of plug-in:

- Plug-in that makes transformations on one or several C3D files loaded into the plug-in itself: in this case, the
Inputs variable is an empty matrix

- Plug-in that makes transformations on a previously loaded C3D files in PLAViMoP 2: in this case, the Inputs
variable is a structure with the following fields:

@)

O
O
O

Markers (structure)

Scalars (structure)

Analogs (structure)

Rate : frame rate of the C3D file (1 x 1 matrix)

Markers, Scalars and Analogs fields have fields too, whose labels are:

- The name of the markers for markers: these data are stored in the Inputs variable and send to the plug-in
function as n x 3 matrix (where n is the number of frames). For example:

Inputs.Markers.R_Heel
Inputs.Markers.L_Heel
Inputs.Markers.R_Foot ...

- The name of the markers with the pre-string “V_" for velocity and “A_" for acceleration for scalars: these data
are stored in the Inputs variable and send to the plug-in function as n x 3 matrix (where n is the number of
frames):

Inputs.Scalars.V_R_Heel

Inputs.Scalars.V_L Heel
Inputs.Scalars.V_R_Foot ...The name of the markers with the pre-string “NV_" for velocity’s norms and
“NA_" for acceleration’s norms for analogs: these data are stored in the Inputs variable and send to the plug-
in function as n x 1 matrix (where n is the number of frames). For example:

Inputs.Analogs.NV_R_Heel
Inputs.Analogs.NV_L_Heel
Inputs.Analogs.NV_R_Foot ...

The Outputs variable should be organized in the same way, i.e. with Markers &/or Scalars &/or Analogs fields.

Here is a Matlab plug-in script example allowing to translate the point-lights of a C3D file along X, Y and Z-axis. The
distances are set by the user through an input dialog box.

-28 -

Example of plug-in that needs a C3D file loaded in PLAViMoP 2 Software:

Mandatory line

function Cutputs=Translate (Inputs) D et it L e T PP PP TP
% Check inputs -“\
if ~isstruct (Inputs) 1
1 .
aa=msgbox ('Please load a c3d file in PLAViMoP Software before using this plug-in.') I‘ CheCk that the I’equn‘ed
itf Soo----- e
waitfor(aa) o> <«

Qutputs=[];
return

end

% Get list of markers

lab=fieldnames (Inputs.Markers);

% Initialize exit wvariable
ok=0;
% Default translation values
defaulc=[0 O 0]: N
while ok==0 !
% Question dialog to set translation valu :
prompt= about X-axis:', :
about Y-a=zis:',... K
slat about Z-axis'}; ’
dlg_title= £ tramnslation offsets'; :
num lines=1: :
def={num2str(default (1)) ,num2str (default (2)) ,,numZstr (default (3))}; :
answer=inputdlg (prompt,dlg_title,num lines,def); .—)
% Check walidity of settings (numerical wvalues)
ok=1:
str={"X";"Y';'Z'};
msg={"'"};
for j=1:3
if disempty(str2double (answer{j})) | isnan(str2double (answer{j})
ok=0:
default (j)=0;
msg{end+l}=['Reset a correct wvalue for ' str{j} ' translation.'
else
default (j)=str2double (answer{j}):
end
end
if ok==0
aa=magbox (m=ag, 'Bad setting ...'):
waitfor(aa):
end
end
% Apply translation on each marker
for i=1:numel (lab)
Outputs.Markers. (lab{i})=[Inputs.Markers. (lab{i}) (:,1)+default (1
Inputs.Markers. (lab{i}) (:,2)+defaulc (2
Inputs.Markers. (lab{i}) (:,3)+default (3)]:

end

end % function

-29-

Y
A

1:

¥ C3D file for this plug-in
i type is loaded in PLAViMoP

Retrieve the names of
the C3D file point-lights

Dialog box to set the
distances for the 3
translations

Control loop to ensure
the validity of settings

Computations and Outputs
variable settings

Mandatory line

Example of plug-in that asks for C3D file(s) into the plug-in itself:

function Cutputs=MixC3D(Inputs) <--------------------------mmm e mmmmmmonmmemmm- “ﬂaf1dat0fy|ine

% Initialize

Cutputs=[]:

% Get files
[FileNamel, PathNamel]=uigetfile ({'*.c3d"}, "File Selector: C3D %1'):;

the end of the blueg-in

No outputs send to PLAViMoP at

if FileNamel==
return
end S r -

the plug-in

[FileName2, PathName2 J=uigetfile({'~.c3d"}, "File Selector: C3D #2'):

Load C3D file(s) into

4
i
i
if FileNMame2==0 !
return H

4

end -
% Get list of markers A
c3dl=btkReadlcquizition([PathNamel FileMNamel]):
c3d2=btkReadlcquisition ([PathName2Z FileName2]):
markersl=btkGetMarkers (c3dl):
markers2=btkGetMarkers (c3d2):;

labl=fieldnames (markersl) ; \,- Q- Read Contents Of
lab2=fieldnames (markers2) ; the C3D files
nFramesl=size (markersl. (labl{1}),1):
nFramesZ=zize (marker=2. (lab2{1}),1):

FrameRatel=btkGetPointFrequency (c3dl) ;
FrameRate2=btkGetPointFregquency (c3d2) ; _’
% Mew C3D
max ([nFrame=sl nFrames2])
cid=btkNewhcqguisition (0, max ([nFramesl nFramesz2])):
btkSetFrequency (c3d, max ([FrameRatel FrameRateZ])):
for i=l:numel (labl)
if nFramesl>nFrames2
btkAppendPoint (c3d, "marker',labl{i}, markersl. (labl{i})):
else
brtkippendPoint (c3d, "marker',labl{i}, [markersl. (labl{i}) rones (nFrames2-nFrame=1, 3) .*NalN]) :
end
end
for i=l:numel (lak2)
if nFramesZ>nFramesl
if ismember (lab2{i},labl)
btkAppendPoint (c3d, 'marker’, [lab2{i} '_2'],markers2. (lab2{il}));
else
btkippendPoint (c3d, 'marker',lab2{i},markers2. (lab2{i})):
end
else
if ismember (lak2{i},labl)

btkkppendPoint (c3d, 'marker’, [lab2{i} ' 2'], [markers2. (lab2{i}) ;ones (nFramesl-nFrames2,3).*Nal])’

else
btkAppendPoint (c3d, 'marker',lab2{i}, [markers2. (lab2{i}) ;ones (nFramesl-nFrames2, 3) . *NalN]) ;
end
end
end

-~

Create a new
C3Dfile

N —————————

\,

btkWritehcquisition(c3d, [path file]):;
' created sucessfully in:']:;path}, 'Informations');

aa=msgbox ({[file

i Save the new C3D file

waitfor (aa)
End 3 FTUNCTION Moo mm = mmm oo e o e e e

-30-

Mandatory line

